16 mars 2008

"Et si le 9 était la clé"

"Et si le 9 était notre matrice?..."Non, je n'ai rien contre TF1... A moins que... Phenoménal ! (Table de 9)envoyé par El_Jj "Les tables de multiplications, c'est un cauchemar", "Ca vous parait obscur, normal, c'est des maths"... Passons... Je passe également sur leur notion de "preuve" plutôt empirique.Pas de note anti-Jean-Luc Reichmann, j'en ai déjà fait une, c'est juste un moyen détourné de parler des petits trucs que vous connaissez peut-être déjà : les critères de divisibilités !Ca... [Lire la suite]
Posté par El Jj à 17:19 - Commentaires [3] - Permalien [#]
Tags : ,

02 mars 2008

142857

142857... Un nombre à retenir, pour épater vos collègues dès qu'une calculette tombe dans vos mains : 142857 × 1 = 142857142857 × 2 = 285714142857 × 3 = 428571142857 × 4 = 571428142857 × 5 = 714285142857 × 6 = 857142 D'où vient ce prodige ? Et surtout, comment se rappeler de ce nombre étrange pour le montrer à ses amis ? Petites explications. Tout d'abord, les nombres périodiques.Un nombre périodique est un nombre possédant un développement décimal périodique, une même suite de chiffres se répétant à l'infini, comme par exemple... [Lire la suite]
Posté par El Jj à 13:00 - Commentaires [3] - Permalien [#]
Tags : ,
17 février 2008

L'œil d'Horus plane

Vous disposez de 5 tartes et de 7 enfants affamés. Chacun veut autant de tarte que ses 6 compagnons, et veut des parts de la même forme. Comment procéder au découpage ?(On pourra par exemple couper chaque tarte en 7, et donner 5 morceaux à chacun, mais 35 parts, ça fait beaucoup trop de miettes...)Les fractions des ÉgyptiensEn remontant 2 semaines en arrière sur ce blog, ou 4000 ans en arrière et en Égypte, on découvre de quelle manière atypique les égyptiens écrivaient les nombres : un bâton pour représenter 1, une anse pour... [Lire la suite]
Posté par El Jj à 16:03 - Commentaires [3] - Permalien [#]
Tags : , , ,
27 mai 2007

J'aimerais tant revoir Syracuse

"Prenez un entier supérieur à 1.S'il est pair, divisez le par 2.S'il est impair, multipliez-le par 3 et ajoutez 1.Réitérez ensuite les deux précédentes étapes" Ce qui est surprenant dans cette histoire, c'est que la suite obtenue tombera toujours sur 1, peut importe l'entier choisit au départ. Et ce qui est encore plus surprenant, c'est que personne ne sait pourquoi ! Ce problème est couramment appelé Conjecture de Syracuse. (mais aussi problème de Syracuse, algorithme de Hasse, problème de Ulam, problème de... [Lire la suite]
Posté par El Jj à 16:40 - Commentaires [7] - Permalien [#]
Tags : ,
17 novembre 2006

Et 2+5=0

Dans la série des égalités, voici une très belle démonstration de 2+5=0, mais pour celà, il va falloir fabriquer une toute nouvelle théorie mathématiques. Voici donc la théorie de l'introinspectromorphisme (nom que je viens d'inventer à l'instant, je crois que ça se voit). Dans cette toute nouvelle théorie, je décide que 2 et 5 sont tous les deux égaux à 0 (Il n'y a pas à discuter de ça, je le décide comme ça). Dans cette même thoérie, je décide que 0+0=0 (Surement plus facile à admettre). Dans cette théorie, on a bien 2+5=0... ... [Lire la suite]
Posté par El Jj à 16:58 - Commentaires [9] - Permalien [#]
Tags :
16 novembre 2006

3+3 = 1 (Initiation à l'arithmétique modulaire)

3+3 = 1Et je peux le prouver sans faire une démonstration fausse ! Combien y a t'il d'entiers, à peu près ? Au bas mot, disons qu'il y en a a peu près un nombre infini. Et l'infini, c'est grand (en, réalité, c'est encore plus). Que penseriez-vous d'en avoir que 5, ça serait plus simple, non ? 0, 1, 2, 3 et 4, de quoi pouvoir compter sans grandes difficultés sur une seule main. (Si vous avez 6 doigts par mains, ne lisez pas cette note, vous ne comprendrez pas. Si vous avez une infinité de doigts, vous pouvez toujours la lire, mais... [Lire la suite]
Posté par El Jj à 21:16 - Commentaires [5] - Permalien [#]
Tags :