06 juillet 2014

Du simple au Dobble

C'est les vacances, l'occasion de sortir une nouvelle fois les jeux de société pour jouer avec beau-papa. Pas de Monopoly ou de serpents et échelles, sortons plutôt un véritable jeu moderne, comme il en existe des floppées aujourd'hui, tous plus inventifs les uns que les autres (sérieusement, allez dans les boutiques de jeu de société !). Je vais donc parler de Dobble de Asmodée, un jeu d'observation et de vitesse pour toute la famille, qui cache une structure mathématique hallucinante.  Une fois n'est pas coutume, l'article qui... [Lire la suite]
Posté par El Jj à 10:00 - Commentaires [13] - Permalien [#]
Tags : , , ,

13 avril 2014

La dualité. Mesdames et messieurs.

Il n'y a pas que les physiciens quantiques et les philosophes qui ont le monopole de la dualité. Les mathématiciens ont aussi leur mot à dire, et ils ne se sont pas privés : dual d'un polyèdre, dual d'un graphe, dual d'un espace vectoriel, dualité de Poincaré... Ma dualité préférée est celle de la géométrie projective, le domaine de la géométrie qui étudie les notions de perspectives. Cette dualité permet sans effort de fabriquer plein de nouveaux théorèmes de géométrie. Mais pour cela, il faut comprendre dans ses très grandes lignes... [Lire la suite]
Posté par El Jj à 10:00 - Commentaires [6] - Permalien [#]
Tags : , , , ,
24 novembre 2013

Bézout futé

Le théorème de Bézout n'est pas qu'un théorème d'arithmétique vu en Terminale, c'est aussi un des principaux résultats de la géométrie algébrique. Ce qui est chouette avec ce résultat, c'est qu'il est manifestement faux au premier abord, mais qu'il devient particulièrement satisfaisant quand on s'y penche un peu. Je ne vais pas le creuser dans cet article, simplement déblayer le terrain. En quelques mots, il dit que : Deux courbes algébriques de degré n et p ont exactement n×p points d'intersection. Une courbe algébrique, c'est une... [Lire la suite]