Choux romanesco, Vache qui rit et intégrales curvilignes

09 décembre 2017

L'homme qui défiait l'infini - Chouxrom' Ciné Club #01

Le cinéma respecte-t-il les mathématiques ? C'est une question qui mérite quelques études de cas. Commençons avec le biopic de Ramanujan : l'homme qui défiait l'infini.

Vignette2

L'homme qui défiait l'infini - Chouxrom' Ciné Club #01

Script

Le cinéma aime parler de mathématiques. C’est exotique, on ne comprend pas tout, et surtout, ça peut donner des scènes où les personnages se mettent sans raison à écrire sur les fenêtres.
Dans cette nouvelle série de vidéo, il sera donc question du 7eme art. Attention cependant, étant donné que je n’y connais absolument rien en cinéma, il ne sera pas du tout question de critiques. Je vais plutôt tenter de décrypter les aspects mathématiques des films et séries qui ont tenté d’aborder le sujet. Les maths que l’on y trouve sont-elles réalistes, ou bien complètement à côté de la plaque ? Commençons aujourd’hui avec un bon élève, “l’homme qui défiait l’infini”, film de 2016 réalisé par Matt Brown, avec Jeremy Irons et Dev Patel. Ce film nous raconte la vie de Srinivasa Ramanujan, le genre de génie que l’on ne retrouve que dans l’histoire des mathématiques. Le réalisateur s’est appuyé sur “The man who knew infinity”, une biographie de Ramanujan écrite par Robert Kanigel. À noter que dans les co-producteurs et consultants du film, on retrouve quelques mathématiciens, et pas des moindres. Il y a par exemple Ken Ono, spécialiste des travaux de Ramanujan, ou Manjul Bhargava, médaillé Fields en 2014.

Que raconte exactement ce film ? Je risque de spoiler un peu, mais bon, ça reste le biopic d’un mathématicien ayant vécu pendant la première guerre mondiale, on sait tous qu’il meure à la fin. Si vous avez vu le film, tant mieux, parce qu’il est sympa, et si vous ne l’avez pas vu, il y aura des tas de choses à y découvrir dont je ne parlerai pas dans les minutes qui viennent.

Voici Ramanujan, mathématicien amateur. Nous sommes en 1914 en Inde, et le plus important pour le moment est de travailler pour nourrir sa femme. Il sera embauché comme comptable par Narayana, à condition qu’il lui explique le contenu de son cahier de mathématiques. Verdict : ses recherches ont l’air particulièrement brillantes, il serait dommage qu’elle ne soient pas connues en dehors de Madras. Ils demandent alors conseil à Sir Francis Spring, un ingénieur anglais responsable du développement du réseau de chemin de fer indien. Il lui propose d’écrire des lettres présentant ses travaux à plusieurs mathématicien anglais. D’abord à Henry Baker et Ernest Hobson, à peine évoqués dans le film, mais surtout à Godfrey Harold Hardy, qui l’invitera à Cambridge.

Arrivé au Trinity College, il fera la rencontre à l’écran de John Littlewood, de Bertrand Russel et plus tard de Percy MacMahon. C’est cependant avec Hardy que Ramanujan va devoir travailler pour pouvoir réaliser son rêve : publier ses travaux. Comme dans tout bon buddy movie, tout les oppose. D’un côté, il y a Ramanujan, marié, profondément religieux et qui aborde les mathématiques par leur côté intuitif. De l’autre, il y a Hardy, célibataire, athée et qui ne peut admettre un théorème sans une démonstration. Sans surprise, la collaboration sera difficile, puisque Hardy passera son temps à sermonner Ramanujan sur l’importance des démonstrations.

Je vais passer sur les quelques anachronismes et erreurs factuelles du film, la principale étant la différence d’âge entre les acteurs et les personnages qu’ils interprètent. Par exemple, Hardy et Ramanujan n’avaient qu’à peine 10 ans de différence, alors que les acteurs Dev Patel et Jeremy Irons en ont 42. De même, Janaki, la femme de Ramanujan, n’est sensé n’avoir qu’une douzaine d’année au début de l’histoire. Forcément, la romance aurait perdu en glamour à l’écran.

Revenons plutôt au personnage central du film, les mathématiques. En arrivant en Angleterre en 1914, Ramanujan espère publier pour la première fois en dehors de l’Inde. Son travail dont il est le plus fier, c’est une formule sur les nombres premiers. Quand Littlewood y trouvera une erreur, il donnera raison à Hardy quant à l’importance des démonstrations face à l’intuition seule.
Cette formule de Ramanujan, qui n’est pas montrée dans le film, prétend donner une valeur exacte de la fonction π, la fonction qui compte le nombre de nombres premiers, rien à voir avec le nombre π. À titre d’exemple, π(10) = 4, car il y a 4 nombres premiers inférieurs à 10. De même, on peut calculer que π(1000) = 168.  La connaissance de cette fonction est primordiale pour comprendre la répartition des nombres premiers. Avec leur célèbre théorème des nombres premiers, Hadamard et La Vallée Poussin ont prouvé en 1896 que le nombre π(x) était de l’ordre de x/ln(x). Cette formule permet de dire qu’il y a environ 145 nombres premiers inférieurs à 1000, soit une erreur de 14% avec la valeur réelle. Une bonne formule, donc, mais qui reste améliorable. Ramanujan avait d’ailleurs trouvé seul ce résultat avant d’arriver en Angleterre. Une meilleure approximation de la fonction π est donnée par la fonction Li, la fonction logarithme intégral, définie comme son nom semble l’indiquer par une intégrale. Pour le calcul de par exemple π(1000), l’erreur n’est que de 6%.

En comparant les courbes de ces deux fonctions, on peut sans prendre de risques conjecturer que celle de π est toujours en dessous de celle de Li. En réalité, cette conjecture est fausse, ce que Littlewood a démontré en 1914 à l’aide de la fonction complexe ζ. Il existe des valeurs pour lesquelles π(x) > Li(x), ce qui est particulièrement contre-intuitif au vu des premières valeurs. En fait, la plus petite valeur x aujourd’hui connue qui rend fausse la conjecture est de l’ordre de 10^370, un nombre trop grand pour être imaginable et bien sûr, ça, Ramanujan ne l’avait pas vu venir. En fait, il avait supposé dans son raisonnement que la fonction ζ n’avait pas de zéros non triviaux, grosse méprise. Hardy écrira à ce propos que c’est la méconnaissance de la théorie des fonctions à variables complexes qui a abouti à cette formule, la plus grande erreur de sa carrière.

Ce n’est pas la seule erreur de la carrière de Ramanujan, mais cela vient de sa façon remarquable de travailler. Contrairement aux mathématiciens occidentaux incarnés par Hardy dans le film, Ramanujan n’a jamais vraiment été intéressé à faire des démonstrations rigoureuses des formules qu’il mettait au point. Il faut dire qu’il s’est passionné pour les mathématiques grâce à Synopsis of Pure Mathematics, un livre de George Carr recensant sans réelles démonstrations les connaissances de l’époque, soit plus de 6000 formules et théorèmes. On attribue à cet ouvrage cette tendance qu’à Ramanujan a ne pas s’enquérir des preuves de ce qu’il découvre. Pour accéder à de nouvelles connaissances mathématiques, la stratégie de Ramanujan n’est donc pas de les prouver, mais plutôt d’attendre que celles-ci lui apparaissent en rêves. Sa façon romancée de décrire ses incroyables intuitions.

Quand on parle des capacités hors-norme de Ramanujan, on rappelle toujours l’anecdote rapportée par Hardy, celle du nombre 1729. Bien sûr, le film ne se prive pas de le mettre en image. En se rendant au chevet de Ramanujan, Hardy emprunte un taxi portant le numéro 1729. Hardy trouve ce nombre sans intérêt, craignant un mauvais présage. Ramanujan lui réplique alors que, pas du tout, 1729 est un nombre très intéressant, puisque c’est le plus petit entier que l’on peut écrire sous la forme d’une somme de deux cubes positifs, et ce, de deux façons différentes. En effet, 1729 est égal à 1³+12³, mais aussi à 9³+10³. Cette propriété du nombre était connue bien avant Ramanujan, mais c’est malgré tout cette anecdote du taxi qui l’a popularisé. On appelle d’ailleurs désormais N-ième nombre  taxicab le plus petit des entiers que l’on peut écrire comme somme de 2 cubes positifs de N façons différentes. Le nombre 1729 est donc le deuxième nombre taxicab. Le 3e nombre taxicab, quant à lui, vaut 87 539 319. On sait aujourd’hui que la suite des nombres taxicab est infinies, mais on ne connait la valeur que des 6 premiers.

L’autre point sur lequel le film s’attarde est le sujet qui rendra Ramanujan célèbre, celui des partitions d’entiers. On appelle partition de N, noté p(N), le nombre de façon d’écrire N sous la forme d’une somme d’entier positifs décroissants. L’exemple du film est le calcul de p(4), qui vaut 5. En effet, on peut écrire 4 de 5 façons différentes : 1+1+1+1, 2+1+1, 2+2, 3+1 et 4. La croissance de la fonction p est particulièrement rapide, ce qui rend les calculs de p(N) très vite infaisables à la main pour de grandes valeurs de N. Dans le film, Ramanujan se confronte à MacMahon sur le calcul du nombre de partitions de 200. On ne le voit pas directement à l’écran, mais MacMahon utilise pour ce calcul des formules récursives, qui permettent de calculer le nombre de partitions de N si l’on connait le nombre de partitions de tous les nombres inférieurs à N. Pour calculer p(200), il faut préalablement calculer p(199), p(198) etc. Après pas mal de calculs, on peut aboutir au résultat exact, ce qui est montré dans le film. p(200) est précisément égal à 3 972 999 029 388. De son côté, Ramanujan utilise la formule qu’il a découverte, p(N) est à peu près égal à 1/[4N√3]*e^(π√(2N/3)). Cette formule donne des valeurs approchée à quelques pourcents de p(N). Grâce à celle-ci, il obtient un résultat très proche du résultat attendu, c’est à dire «3 trillions 972 mille 998 millions». Une erreur de traduction est à noter, puisque selon les conventions françaises, ce nombre doit plutôt se lire «3 billions 972 mille 998 millions». Il y a en effet deux nomenclatures pour les grands nombres : l'échelle courte, anglo-saxonne (million, billion, trillion, ...) et l'échelle longue, du reste du monde (million, milliard, billion, billiard,). Le mot "trillion" est donc un mot dangereux à utiliser, puisqu'il désigne parfois 10^18 et parfois 10^12. En refaisant les calculs, on peut aussi remarquer qu’il n’a pas réellement utilisé la formule de la scène précédente, puisqu’il aurait dû annoncer sinon un résultat de l’ordre de 4.1 billions. Bref, avec l’aide de Hardy, Ramanujan publiera en 1918 cette formule permettant d’estimer précisément p(x) pour les grandes valeurs de x, une avancée incroyable de la combinatoire à l’époque.

Les travaux de Ramanujan ne s’arrêtent pas aux partitions. Avant son arrivée en Angleterre, sa spécialité, c’était surtout les identités quasi-mystiques qu’il a réussi à intuité mais sans jamais vraiment les démontrer. Les plus marquantes de ces formules consistent en des sommes infinies ou en des racines carrées imbriquées à l’infini, d’où ce surnom de l’homme qui connaissait l’infini, et donc du titre du film.
Dans le courrier qu’il a adressé à Hardy depuis l’Inde, Ramanujan lui a présenté plus d’une centaine de formules. Certaines étaient déjà connues à l’époque, d’autres étaient particulièrement ingénieuses, et d’autres étaient fausses, mais de façon si imperceptible qu’elles restent brillantes malgré tout. À propos de ces formules, Hardy a dit : “un simple regard sur celle-ci est suffisant pour voir qu’elles sont l’oeuvre d’un mathématicien de haute classe. Ces formules doivent être vraies, car si elles ne l’étaient pas, personne ne pourrait avoir l’imagination pour les inventer.”

Toutes ces formules, Ramanujan les a recueillies depuis son enfance jusqu’en 1914 dans ses célèbres carnets montrés à l’écran. Au nombre de 3, ils regroupent dans un style complètement brouillon tous ses résultats découvert en autodidacte, soit à peu près 2 500 propriétés et formules. Sur les 2 500, seules moins d’une vingtaine sont accompagnés d’indications d’une méthode qui l’aurait permis de les mettre au point.


À l’instar des trois mousquetaires, il existe un quatrième carnet découvert après sa mort en 1920, ajoutant 600 formules supplémentaires inédites. Hardy a souhaité faire éditer ces fameux carnets, en y ajoutant les démonstrations des théorèmes nouveaux, les références de ceux qui étaient déjà connus, et en corrigeant les résultats faux. Un travail titanesque, seulement achevé par Bruce Berndt en 1998 pour ce qui est des 3 carnets principaux, et en 2013 pour le carnet secret. Il dira d’ailleurs de ce dernier carnet que sa découverte est comparable à celle de la symphonie n°10 de Beethoven, phrase reprise dans l’épilogue du film.

À propos d’épilogue, il est aussi énoncé que les travaux de Ramanujan ont trouvé leur application dans la compréhension du comportement des trous noirs. Si on veut être plus précis, il ne s'agit pas vraiment des trous noirs physiques (les objets stellaires issus de l'effondrement des étoiles), mais plutôt de leur version idéalisée possédant des bonnes propriétés physiques et mathématiques.  Il faut dire qu’il a travaillé sur un très grand nombre de sujets, il semble logique que certains d’entres eux puissent avoir des applications en physique. En l'occurrence, il se trouve que Ramanujan a étudié dans les dernières années de sa vie, après son départ d’Angleterre, des exemples de fonctions appelées aujourd’hui les “fausses formes modulaires”. Il n’a travaillé que sur des exemples et non sur leur théorie générale, et c’est plutôt celle-ci qui trouve des application dans l’étude de ces fameux trous noirs. Bref, Ramanujan n’a jamais travaillé sur les trous noirs, et n’a d’ailleurs jamais su que ses travaux puissent avoir de telles applications.

Enfin, je suis obligé de parler de cette scène où Ramanujan assiste à un cours sans prendre de note, et où le prof essaie de l’humilier en lui demandant de venir raconter au tableau ce qu’il sait. Ramanujan s'exécute, et termine le cours à la place de ce prof, s’en suit une scène où celui-ci vexé menace Ramanujan à l’aide d’insultes racistes.  Pour être précis, il est question dans ce cours de développement en série de Taylor de la forme générale des intégrales elliptiques de première espèce. Des mathématiciens ayant travaillé sur le film, la formule écrite au tableau est parfaitement correcte. Ce qui l’est moins, c’est l’anecdote en elle-même, puisque l’odieux professeur que l’on voit dans cette scène, Howard, n’a jamais existé. La réelle anecdote implique les mêmes intégrales elliptiques mais le professeur, Arthur Berry, terminera son cours impressionné par les qualités de Ramanujan.

Pour conclure, «l’homme qui défiait l’infini» est le bon élève des biographies de mathématiciens au cinéma, qui peut plaire à plusieurs publics différents. D’un côté, le grand public découvrira l’existence de Srivinasa Ramanujan, personnage incontournable de la culture en maths. Bien sûr, l’histoire est romancée pour nous attacher au personnage, ça reste quand même du cinéma. D’un autre côté, le film plaira également aux public matheux. Déjà, toute formule apparaissant à l’écran est correcte, mais surtout, le film aborde la question de l’importance de la démonstration en mathématiques, sujet loin de passionner les foules en dehors des mathématiciens. Bref, si vous voulez regarder un film qui parle bien des mathématiques, je vous le recommande !

Sources :
The Indian Mathematician Ramanujan - G. H. Hardy
Highly Composite Numbers - S. Ramanujan
A Synopsis of elementary results in pure mathematics- G. Carr

The man who knew elliptic integrals, prime number theorems, and black holes et The man who knew partition asymptotics - Q. Yuan
Man Who Knew Infinity - a must see film - K. Seaton
Touched by the goddess - K. Alladi
Who was Ramanujan - Stephen Wolfram

Srinivasa Ramanujan - K. S. Rao
Les notes de Ramanujan, un trésor inépuisé
- A. Bleicher - Pour La science n°441
Les mystérieux carnets de Ramanujan et les Carnets de Ramanujan - E. Thomas -
Uncovering Ramanujan’s “Lost” Notebook: An Oral History - R. P. Schneider

 

Posté par El Jj à 12:34 - Commentaires [0] - Permalien [#]
Tags : , , , , ,

27 septembre 2017

Deux (deux ?) minutes pour... classer les pavages !

Les mathématiciens aiment classer des trucs, et avec les pavages, ils ont été servis !

Script

En mai 2017, le mathématicien français Michaël Rao (et non Mickaël, mea culpa)  publie “Recherche exhaustive des pentagones convexes qui pavent le plan”. Il signe alors la fin de la classification des pavages périodiques convexes du plan, question ouverte depuis tout de même presque un siècle. C’est l’occasion de traiter de la classification des pavages, et ça tombe bien, j’ai deux minutes pour en parler.

Voici un motif quelconque. Avec plusieurs copies de ce motif, il m’est possible de fabriquer un splendide papier peint. En prenant d’autres motifs, j’obtiens d’autres papiers peints. Dans tous les cas, chaque motif peut se déduire du premier par un simple déplacement, une translation. Seulement, voilà, tous ces papiers peints sont un peu les mêmes, générés à partir d’un même motif et de translations. Est-il possible de faire des choses un peu plus inattendues ?
Eh bien, bien sûr que oui, sinon je ne poserais pas la question. Si je m’autorise à tourner les pièces, je peux obtenir à partir de mon motif de base un papier peint radicalement différent ! Celui-ci par exemple peut être généré à partir de rotations et de translations. Ce n’est donc pas simplement le motif qui produit le papier peint,  mais plutôt la façon dont on peut le générer à partir de ce motif. Et s’il existe déjà deux papiers peints différents, c’est qu’il y en a davantage. Combien ? Excellente question.

Précisons un peu les termes. Nous allons parler de papier peints périodiques. Ce que je vais appeller «papier peint», c’est la répétition d’un même motif à l’infini et de façon discrète dans toutes les directions du plan. On dit qu’un papier peint est périodique quand il existe au moins deux translations de directions différentes qui transforment la globalité du papier peint en lui même. Quand ces deux translations n’existent pas, on parle de non périodicité, d’apériodicité ou de quasipériodicité suivant le contexte. Les différences sont subtiles, le sujet est intéressant, mais on en parlera probablement dans une autre vidéo, Concentrons-nous aujourd’hui plutôt sur les pavages périodiques.

On vient de le dire, on trouve toujours dans un papier peint des translations, mais on a vu que l’on peut parfois y trouver aussi des rotations. Ce n’est pas tout. On peut également retrouver d’autres transformations, comme les symétries centrales, puisque ce sont des cas particulier de rotations. Il y a aussi les symétries axiales, et enfin la symétrie glissée, c’est à dire une symétrie axiale suivie d’une translation parallèle à l’axe. Et, c’est à peu près tout. Toutes ces transformations que l’on peut retrouver dans un papier peint sont les isométries du plan, les transformations qui conservent les tailles des objets qu’elles transforment. On exclut donc les transformation qui déforment, comme les homothéties ou les inversions.

Quand on regarde un papier peint, une bonne question à se poser est celle de son groupe, c’est à dire, quelles sont les isométries que l’on y retrouve.
Prenons par exemple ce superbe papier peint fleuri vintage. Quelles isométries peut-on y retrouver ? Déjà, il y a des translations. Au moins deux, et de directions différentes, c’est bien un papier peint périodique. Ensuite, on peut voir que les bouquets se regroupent toujours par 4. Cela marque la présence de ce que l’on appelle des symétries d’ordre 4, c’est à dire, des rotations d’un quart de tour centrées sur le milieu de ces bouquets de bouquets, que ce soit les grands ou les petits. On peut enfin déceler ici et là des symétries centrales
On peut donc dire que le groupe de ce papier peint est composé de translations, de 2 familles de rotations d’un quart de tour et de 2 familles de symétries centrales.
Un second exemple, avec ce papier peint sixties. Comme toujours, des translations sont présentes, selon plusieurs directions différentes. Aucune rotation ni symétrie centrale n’est à signaler, on peut cependant voir des symétries axiales, dont l’axe est vertical. Plus difficile à repérer, on peut retrouver dans ce papier peint des symétries glissées, dont l’axe n’est pas le même que celui des symétries axiales.
On peut donc dire que le groupe de ce papier peint est composé de translations, d’une famille de symétries axiales et d’une famille de symétries glissées.
On a donc déjà décrit 4 groupes de papiers peint différent, chacune portant son petit nom. On a vu le groupe p1, composé uniquement de translations, le groupe p3, composé de translations et de rotation d’un tiers de tour, le groupe p4 composé entre autres de rotations d’un quart de tour, et le groupe cm, sans rotations, mais possédant des symétries axiales et des symétries glissées.
Mais combien existe-t-il de papiers peints différents, alors ? Eh bien, il faut faire un truc que les mathématiciens aiment faire : il faut établir la classification des groupes de papiers peints. Ce travail n’est pas fondamentalement difficile, mais est tout de même loin d’être trivial. Pour comprendre l’idée, on va établir ensemble la classification des groupes, non pas de papiers peints périodique, mais de son équivalent à une seule dimension : les frises périodique.

Alors qu’un papier peint périodique est la répétition discrète de motifs du plan stable selon deux translations, une frise périodique est la répétition discrète de motifs stable selon une seule direction. Pour plus de simplicité, on supposera ces frises horizontales.  La classification des frises est plus simple que celle des papiers peints, puisque seules 5 isométries  préservent les frises. Il y a, par définition, les translations. On peut également trouver des symétries centrales, des symétries d’axes verticaux, des symétries d’axes horizontaux, ou les mêmes, mais avec glissement. On retrouve toujours des translations dans les frises et, si une symétrie d’axe horizontale est présente, on aura forcément des symétries glissées, la réciproque n’étant pas vraie. Selon les isométries présente, on peut donc dénombrer a priori 12 types de frises possibles. On peut alors chercher des exemples pour chacun de ces 12 types. On a donc des frises qui présentent uniquement des translations ou, en plus des translations, uniquement des symétries d’axes verticaux, uniquement une symétrie d’axe horizontal, uniquement des symétries centrales ou uniquement des symétries glissées. On peut aussi trouver une frise qui présente toutes les isométries, ou bien toutes sauf la symétrie d’axe horizontal. Et pour les autres cases du tableau ? Essayons par exemple de construire une frise qui présente une symétries d’axe horizontal et d’autres d’axes verticaux, mais pas de symétrie centrale. On part d’un motif, et on lui applique une symétrie d’axe horizontal, puis d’axe vertical. En procédant ainsi, on retrouvera forcément dans la frise une symétrie centrale. Toutes les cases du tableau ne sont donc pas possible. En inspectant chacun des 12 cas, on peut alors conclure qu’il n’existe que 7 groupes de frises différents. Je vous invite à visionner la vidéo de Micmaths pour plus de détails.

Pour les papiers peints, le principe est le même. On commence par lister les isométries qu’il est possible d’y retrouver, et on cherche lesquelles sont possibles, et lesquelles sont impossibles. La démonstration est particulièrement laborieuse, donc je vous livre la conclusion : il en existe précisément 17 et, pour le plaisir de galérer au montage de cette vidéo, voici la liste exhaustive des 17 groupes de papiers peints :
P1, composé de translations seules
Pm, composé de translations et de symétries axiales d’axes tous parallèles
Pg, où l’on remplace les symétries axiales par des symétries glissées
Cm, composé de translations, de symétries axiales et de symétries glissées, d’axes tous parallèles
Pmm, composé de translations, et de symétries axiales selon deux directions perpendiculaires
Pgg, composé de translations, et de symétries glissées selon deux directions perpendiculaires
Pmg, qui est un compromis entre pmm et pgg : une direction de symétrie axiales, une autre de symétrie glissée
Cmm, un autre type de compromis : deux directions de symétries axiales, et des symétries glissées en parallèle
P2, composé de symétries centrales seules, en plus des translations
P4, qui y ajoute les rotations d’un quart de tour
P4g, qui ajoute des axes de symétries axiales selon deux directions perpendiculaires
P4m, qui rajoute des symétries axiales selon deux autres directions
P3, composé de translations et de symétries d’un tiers de tour
P6, qui y rajoute des symétries d’un sixième de tour
P6m, qui y rajoute un nombre impressionnant de symétries axiales
P3m1, composé de translations, de symétries axiales selon 3 directions et de symétries d’un tiers de tour dont les centres sont tous aux points d’intersection des axes de symétries
En enfin, p31m, qui a les mêmes éléments que le précédent, mais dont les centres de symétrie ne sont pas tous aux points d’intersection des axes de symétries

Y en a t-il d’autres ? Non ? Vais-je vous le prouver ? Non plus, puisque plusieurs mathématiciens l’ont fait avant moi, je leur fais confiance.
Bizarrement, l’histoire a pris son temps avant de prouver qu’il n’existe que 17 groupes de papiers peints. Le premier à avoir tenté de les classifier semble être Camille Jordan en 1868, qui n’en a déterminé que 16 sur les 17. La classification complète est attribuée au mathématicien russe Evgraf Fedorov, en 1891, qui a prouvé une bonne fois pour toutes qu’il n’y en a pas plus de 17. Il peut sembler assez étonnant de voir que l’étude des symétries des papiers peints est si récente, quand on sait que la quasi totalité des types de papiers peints et de frises se retrouvent dans les arts de l’Islam, notamment sur les murs de l’Alhambra à Grenade, groupe de palais construits à partir du XIIIe siècle. En fait, l’étude minutieuse des symétries du plan ne pouvait exister sans le concept de groupe, concept incontournable en mathématiques mais qui n’a été introduit qu’au cours du XIXe siècle. Il semble également que la classification des symétries du plan intéressait moins que celle des symétries de l’espace, indispensable à la cristallographie pour les chimistes. En réalité, quand Fedorov décrit les 17 groupes de papiers peints, c’est seulement en préambule de la description complète des 230 groupes d’espaces, l’équivalent 3D des groupes de papier peint.

Mais quand les mathématiciens se décident à classer des choses, ils ne s’arrêtent pas si simplement. On a classé les papiers peints, mais pas encore les motifs que l’on peut y trouver. On va alors arrêter de parler de papiers peints, mais plutôt parler de pavages.
Un pavage, c’est donc un papier peint où l’on retrouve un ou plusieurs motifs, les tuiles, qui recouvrent la totalité du plan, sans trous ni chevauchement. Il en existe de nombreux types, et mettre de l’ordre dans tout ça demande un peu de patience.

Par exemple, on peut chercher les pavages périodiques où les tuiles sont des triangles équilatéraux, des carrés, des pentagones réguliers ou n’importe quel autre polygone régulier. On parle de pavages uniformes, et rien que ceux-là peuvent très vite devenir pénibles à trier.

Déjà, on peut chercher les pavages dont toutes les tuiles sont les mêmes polygones réguliers. On a ainsi le pavage triangulaire, constitué de triangles équilatéraux ; le pavage carré constitué, ben,  de carrés et le pavage hexagonal, constitué d’hexagones réguliers. Est-ce que c’est tout ? Eh bien, oui, et non. Non, parce que aucun autre polygone régulier ne peut paver le plan. Si on prend par exemple un pentagone régulier, on sait que ses angles mesurent tous 108°. Ainsi, trois pentagones collés à un même sommet ne laissent disponible qu’un angle de 36°, ce qui ne laisse pas la place à un autre pentagone. Bref, pas de pavages par des pentagones réguliers uniquement, non plus avec des heptagones réguliers, ou des polygones à davantage de côtés.
Seulement, si on prend des tuiles carrées, il n’y a pas que le pavage en quadrillage qu’il est possible de construire. En décalant les rangées, il est possible d’en fabriquer d’autres, mais ceux-ci sont moins satisfaisant. Le pavage que l’on obtient n’est pas un pavage côté contre côté, où chaque côté de chaque polygone n’est en contact qu’avec un seul autre polygone. Il existe une infinité de pavages réguliers différents par des carrés qui ne soient pas côtés contre côtés, il est donc raisonnable de les exclure de notre classification.
Un autre point que l’on pourrait prendre en compte est celui de la coloration des polygones. En attribuant une couleur à chaque tuile, les pavages obtenus sont les mêmes, mais les papier peint obtenu ne seront pas nécéssairement les mêmes. Par exemple, en coloriant le quadrillage carré comme un échiquier, le papier peint possèdera des symétries d’un quart de tour, ce qui n’est plus le cas si l’on colorie une bande sur 2. Les coloriages intéressants sont les coloriages uniformes, lorsque ce sont les mêmes couleurs dans le même ordre que l’on retrouve autour de chaque sommet du pavage. On peut alors les dénombrer : il existe ainsi 9 coloriages uniformes différents du pavage carré, 9 pour le pavage triangulaire et 3 pour le pavage hexagonal.
Lorsqu’un pavage côté contre côté présente un unique type de polygone régulier, on parle de pavage régulier, ou de pavage platoniciens. Il n’en existe donc que trois : le pavage carré, le pavage triangulaire et le pavage hexagonal.
Et si, au lieu de n’utiliser qu’un seul type de polygone, on en utilise plusieurs ? Là, ça peut donner des pavages périodique qui peuvent être affreux, comme par exemple celui-ci, composé de bandes de carrés et de bien trop de bandes de triangles. Pour ne pas avoir une infinité de cas possibles, on va se restreindre aux pavages uniformes, où, en chaque sommet du pavage se réunissent les mêmes polygones dans le même ordre. On parle parfois de pavages archimédiens. C’est par exemple le cas du pavage carré adouci, où en chaque sommet se retrouvent deux carrés et trois triangles équilatéraux. Avec un peu de calculs, on peut retrouver la liste complète des pavages uniformes. En effet, on peut prouver que si des polygones réguliers forment un pavage uniforme, alors la somme de l’inverse de leur nombre de côtés vaut toujours ½. Cette équation traduit le fait que tous les sommets du pavage sont équivalent, et on peut calculer qu’elle possède 21 solutions, soit tout autant de pavages potentiels. En fait, toutes les solutions de l’équation ne donnent pas des pavages, c’est par exemple le cas de la solution 5, 5 et 10. Finalement, c’est seulement 11 pavages uniformes qu’il existe au total et ça me fait plaisir de vous les lister. Il y a les trois pavages régulier, le carré adouci, l’hexagonal adouci, le carré tronqué, l’hexagonal tronqué, le tri hexagonal, le petit rhombi tri hexagonal, le grand rhombi tri hexagonal et enfin le triangulaire allongé. On peut remercier Johannes Kepler d’avoir le premier exploré le sujet.
Ça, c’était pour les pavages où tous les sommets sont équivalents. Et lorsque ce n’est plus le cas, on peut quand même lister des choses. Par exemple, si il n’existe pas qu’un seul type de sommet, mais plusieurs types différents, on parlera de pavages k-uniformes, où k est le nombre de sommets différents. Prenons par exemple ce pavage, sobrement baptisé pavage 3-4-6-12, qui possède deux types de sommets différents. Il y a ceux réunissant deux carrés, un triangle et un hexagone, et ceux réunissant un carré, un hexagone et un dodécagone. Puisque ce pavage possède deux types de sommets, on dit qu’il est 2-uniforme. On sait aujourd’hui qu’il existe précisément 20 pavages 2-uniformes, 61 pavages 3-uniformes, et ainsi de suite. Je vous fais une fleur : je ne vais pas vous les lister. On ne connait cependant pas aujourd’hui le nombre de pavages 7-uniformes ou 8-uniformes. Avis aux amateurs…

On a donc classé les types de symétries que l’on retrouve dans les papiers peints périodiques. On a classé les pavages périodiques que l’on peut fabriquer avec les polygones réguliers. Il y a encore quelque chose que l’on a pas classé, ce sont les polygones qui peuvent paver le plan de façon périodique. On sait que seuls trois polygones réguliers peuvent paver le plan, mais qu’en est-il des autres, ceux qui ne sont pas réguliers ?

Par exemple, peut-on toujours paver le plan avec des triangles quelconques ? Eh bien, oui, et il y a une recette qui marche à chaque fois. En accolant deux triangles identiques, on peut toujours former un parallélogramme, qui peut paver le plan. Problème résolu, tout triangle pave le plan.
Et pour les quadrilatères ? Là aussi, on peut résoudre facilement le problème, puisque n’importe lequel peut paver le plan. Il suffit qu’en chaque sommet du pavage se retrouvent chacun des 4 sommets du quadrilatère.

Pour les polygones ayant davantage de côtés, c’est forcément plus compliqué. On a par exemple vu que les pentagones réguliers ne peuvent pas paver le plan. Il y a donc obligatoirement des critères à respecter pour qu’un polygone à 5 côtés ou plus puisse paver le plan.
Pour ne pas nous compliquer trop la tâche pour le moment, on va se concentrer sur les polygones convexes, ceux qui ne possèdent pas de creux. On connait beaucoup de polygones non convexes qui permettent de paver le plan, et la classification est aujourd’hui en 2017 loin d’être achevée. En se limitant aux polygones convexes, on s’enlève une bonne épine du pied, puisqu’on peut prouver qu’un polygone convexe ne peut pas paver le plan si il possède 7 côtés ou plus. En effet, la somme des angles d’un heptagone vaut 900°, soit une moyenne de 128° par angle. Si il existe un pavage d’heptagones convexes que l’on peut supposer côté contre côté, le nombre moyen d’heptagone par sommet sera donné par 360/128, soit 2.8. Puisqu’il faut au moins 3 heptagones par sommet, un tel pavage est impossible. Il ne reste donc que le cas des pentagones et des hexagones à traiter.

Commençons par les hexagones : il y a un critère pas trop compliqué qui permet de savoir si un hexagone convexe peut paver le plan. Un hexagone convexe peut paver de façon périodique le plan si et seulement si
- il possède deux côtés opposés parallèles de même longueur OU
- il possède deux côtés opposés de même longueur, dont l’un est entouré de côté de même longueur OU
- il possède trois paires distinctes de côtés égaux formant des angles de 120°
Autrement dit, un hexagone convexe pave le plan si et seulement si il fait partie d’au moins l’une de ces trois classes. Rien n’empêche qu’un hexagone fasse partie de plusieurs classes différentes, comme c’est le cas de l’hexagone régulier qui vérifie tous les critères. De plus, chaque classe d’hexagone permet de construire un pavage qui lui est propre, mais un même pavé peut parfaitement donner des pavages radicalement différents. Ce que dit surtout ce théorème, c’est que si un hexagone ne vérifie aucun de ces critère, alors c’est sûr qu’il ne pavera pas le plan.

Et pour les pentagones ? A l’instar des hexagones, il y a différentes classes de pentagones qui pavent le plan, et il faut et suffit de rentrer dans l’une de ces classes pour générer un pavage régulier du plan. Il existe 15 classes de pentagones qui pavent le plan, et l’histoire de leur découverte mérite d’être racontée.
Tout commence en 1918, dans la thèse de Karl Reinhardt. Il écrit qu’un polygone peut paver périodiquement le plan si et seulement si il fait partie de l’une des classes de pavé suivante :
Classe 1 : le pentagone possède deux côtés parallèles
Classe 2 : le pentagone possède deux côtés opposés égaux, ces côtés formant avec deux côtés non adjacents des angles supplémentaires
Classe 3 : trois copies du pentagone peuvent former un hexagone
Classe 4 : le pentagone possède deux paires distinctes de côtés égaux forment des angles droits
Et enfin, classe 5 : le pentagone possède deux paires distinctes de côtés égaux, l’une formant un angle de 120°, l’autre de 60°.
Reinhardt conclut que ce sont les seules classes de tuiles pentagonales qui existent, qu’i est inutile d’en chercher plus. L’histoire lui donnera tort, puisqu’il est quand même passé à côté de 10 autres. Ce qu’il s’est passé, c’est qu’il n’a en fait trouvé que les tuiles pouvant donner des pavages isoédriques. On dit qu’un pavage est isoédrique lorsque toutes les tuiles y sont équivalentes. Plus précisément, pour deux tuiles quelconques du pavage, il faut qu’il existe toujours une symétrie du pavage qui transforme l’une des tuiles en l’autre. Prenons ce pavage, par exemple. Les tuiles opposées par leur sommet droit se déduisent l’une de l’autre par une symétrie centrale, laquelle est bien une symétrie du pavage, pas de problème. Par contre, deux tuiles côte à côte se déduisent l’une de l’autre par une rotation d’un quart de tour, transformation qui n’est pas une symétrie du pavage. Au regard donc de ces symétries, toutes les tuiles ne sont pas équivalentes, ce pavage n’est pas isoédrique. Ce que Reinhardt a prouvé, c’est qu’il n’existe que 5 tuiles donnant des pavages isoédriques, mais n’a pas pensé qu’il pouvait en exister d’autres.

La question des pavages pentagonaux restera mise de côté pendant 50 ans, jusqu’à ce que Richard Kershner découvre 3 nouvelles classes de pavés pentagonaux. Cette fois, c’est sûr, pour Kershner, il n’y en a pas d’autres. Il n’a bien sûr pas la place dans les pages de l’American Mathematical Monthly pour prouver ses dires…
Quelques années plus tard, Martin Gardner écrit dans le Scientific American un article relatant les découvertes de Kershner, et c’est à ce moment que le problème des pavages pentagonaux quitte le milieu des mathématiciens professionnels un peu trop sûr d’eux pour celui des amateurs. D’abord avec Richard James, informaticien, qui découvre une nouvelle tuile, et s’empresse de l’envoyer à Gardner. Après qu’il a écrit un nouvel article pour relater la découverte d’un nouveau pavage, ce ne sont pas moins de 4 pavages supplémentaires qui seront découvert par Marjorie Rice, une femme au foyer sans haute formation mathématiques tombée par hasard sur le magazine de son fils. Hommage à Marjorie Rice, décédée à peine deux mois après la découverte de Michael Rao. Vous pouvez retrouver l'étendue de son travail sur son site internetContrairement aux professionnels, ces amateurs ne cherchent pas à avancer que la liste est terminée.
Ce sont donc à présent 13 pavages pentagonaux que l’on connaît. En 1985, une 14e classe est découverte, par le mathématicien Rolf Stein. Bien sûr, il affirme que la liste est complète, et bien sûr, il se plante dans sa démonstration.
La 15e et dernière classe sera découverte en 2015 par les mathématiciens Casey Mann, Jennifer McLoud et leur étudiant. En faisant preuve pour une fois d’un peu de sagesse, ils n’affirment pas que la liste est exhaustive. Ils auraient pu, puisque, effectivement, la liste était bien complète, ce qui a été prouvé en mai 2017 par Michael Rao. Son objectif était de découvrir de nouveaux pavages en testant méthodiquement tous les pavés possibles. Il n’en a pas trouvé de nouveaux, la conclusion est donc qu’il n’en existe pas d’autres. La démonstration utilise donc en grande partie l’informatique, et on ne va pas rouvrir le débat sur la validité d’une telle preuve.

La classification des tuiles convexes est donc aujourd’hui achevée : les polygones qui peuvent paver le plan sont donc les triangles, les quadrilatères, 3 classes d’hexagones, 15 classes de pentagones et c’est tout. Je n’en ai pas parlé, mais on a aussi la liste des pavages isoédriques par des polygones convexes, les pavages où toutes les tuiles sont dans des positions équivalentes. Il en existe précisément 107.
Peut-on alors considérer que la classification des pavages périodiques est bien terminée ? La question des tuiles pentagonales était la véritable dernière question encore ouverte donc, sur ce point, c’est oui. Il faut dire que l’informatique a bien aidé les chercheurs et les amateurs à mettre de l’ordre dans tout ça. Mais il reste malgré tout bien d’autres questions. Il y a déjà la classification des pavages k-uniformes, que l’on connait en partie, mais qui très vite ne présente aucun intérêt. Il y a aussi la classification des pavages périodiques convexes mais non isoédriques en fonction de leur complexité, un chantier loin d’être évident à aborder. Du côté des tuiles non convexes, c’est surtout les polyominos que l’on a étudié, c’est à dire les tuiles composées de carrés accolés. Là aussi, des classifications sont faites en fonction de la complexité des polyominos ou des pavages, je ne vais pas m’étendre davantage sur le sujet. Un autre problème très actuel à propos des tuiles non convexe est de savoir s’il existe des critères permettant de dire si une tuile donnée peut oui on non paver le plan. Il y a aussi la question des pavages qui ne sont pas périodiques. Ces structures sont très récentes, et avant de chercher à mettre de l’ordre dans tout ça, il faut commencer par prendre la pleine mesure de ce que le sujet recouvre et la tâche n’est pas simple. Cela ferait un très bon sujet pour une autre vidéo, non ?

FAQ
- Peut-on paver le plan avec des tuiles non pas polygonale, mais formées par des courbes de Jordan quelconques ?
Deux possibilités. Si elles sont convexes, alors elles ne paveront jamais le plan (trois courbes ne peuvent pas se réunir en un seul point sans former d'angles). Si elles ne sont pas convexes, alors il n'y a pas vraiment de moyens aujourd'hui pour faire des classifications intéressantes.
- Peuton paver le plan hyperbolique ?
Là, il y a un théorème intéressant : tous les polygones réguliers peuvent paver le plan hyperbolique ! Je vous laisse faire vos recherches sur ce sujet...

PU petit rhombitrihexagonal


Sources :
Wallpaper symetry, applet en ligne pour test les 17 papiers peints
The tiling viewer, J. Scherphuis,  applet en ligne pour visualiser tous les pavages convexes connus
Spacegroups, applet à télécharger pour visualiser les 230 groupes d'espace
Album-photo des pavages que j'ai dessiné pour les besoins de cette vidéo

Wallpaper groups, J. Zavadlav
Pavages périodiques, V. Pilaud
History of crystallographic groups and related topics, D. E. Joyce
Wallpaper group, sur wikipedia
What symmetry groups are present in the Alhambra, B. Grünbaum
The Alhambra and the Alcazar, Math & the Art of Escher

Tilings by regular polygons, D Chavey
n-Uniform Tilings, B. Galebach

On paving the plane, R. Kershner
Exhaustive search of convex p entagons which tile the plane, Michael Rao
Pentagon Tiling Proof Solves Century-Old Math Problem, Quanta magazine

Posté par El Jj à 14:19 - Commentaires [7] - Permalien [#]
Tags : ,
30 juillet 2017

Réglons une bonne fois pour toute cette histoire de nombre d'or

Selon une étude, les rectangles dont le format suit le nombre d'or seraient les plus beaux/harmonieux/attirants (rayez la mention inutile) de tous les rectangles. Peut-être, mais il m'en faut plus pour pouvoir être vraiment convaincu. Et si on étudiait vraiment cette question ? Faisons de la science !

Formats de rectangles
Avant de parler de rectangle d'or ou de choses du genre, donnons quelques généralités. On appelle format f d'un rectangle le rapport entre la longueur de son plus grand côté (L) et de son plus petit côté (l). C'est donc un nombre qui sera supérieur à 1 (ou égal à 1 dans le cas d'un carré).

gif

L'intérêt de cette notion, c'est que si deux rectangles ont le même format, alors ils sont grosso modo identiques (ils sont superposables moyennant un agrandissement ou une réduction). Un rectangle de format 1.4, c'est un rectangle 1.4 fois plus long que large, quelle que soit sa taille ou son orientation.


Tous ces rectangles sont similaires : ils ont le même format, malgré une taille et une orientation différente.

Petit panorama des différents formats que l'on a l'habitude d'avoir sous les yeux.



Petit panorama des formats de rectangles que l'on croise dans la vie quotidienne.
Les points violets sont les formats testés dans le sondage décrit plus bas.

Quelques précisions sur les formats de la vie quotidienne

  • Le format des peintures les plus célèbre est loin d'être fixe, de 1.26 pour la nuit étoilée de Van Gogh jusqu'à 2.22 pour Guernica. J'aurais pu placer le radeau de la méduse (1.45) ou la Cène (1.91)
  • Mis à part Macron qui fait son malin avec une photo officiel au format 1.4, les autres présidents de la 5e république ont en mairie des photos au format 1.3.
  • La norme ID-1 donnant le format des cartes de crédit a lui permet de se rapprocher du nombre d'or (1.6). Du côté des autres cartes, nos cartes d'dientités françaises (norme ID-2) ont pour format 1.41, tout comme les passeports (norme ID-3). Les cartes SIM utilisent le format 5/3 (norme ID-000).
  • Les billets de banques ont des formats assez longs ; de 1.8 pour le billet de 20€ jusqu'à 1.95 pour le billet de 500€.

Mathématiquement, il y a deux formats qui sont un peu plus intéressants que les autres :

  • le format f = √2, plus connu sous le nom A4 ou A3. C'est le format des cartes postales, de votre fiche de paie ou des cartes de poker. Il repose sur une construction mathématique : il faut que, lorsque l'on plie en deux une feuille de format Ax, on obtienne une feuille de même format. Théorème : il n'y a qu'un seul format qui vérifie cette propriété.

    Posons l'équation. On prend un rectangle de longueur L et de largeur l (on supposera L>l) ; son format est donc f = L/l. On plie ce rectangle en deux : la nouvelle longueur L' est l'ancienne largeur, donc L'=l, et la nouvelle largeur l' est la moitié de l'ancienne longueur, donc l'=L/2. Le nouveau format est donc f' = L'/l' = l/(L/2) = 2/f. Ces deux formats doivent être les mêmes ce qui donne l'équation f=f', soit f=2/f, et donc f²=2. Cette équation n'a qu'une seule solution (positive) : f = √2.

    Dans un souci de standardisation, il a aussi été décidé qu'une feuille de format* A0 mesurerait 1m² ; puisqu'elle doit être √2 fois plus longue que large, cela donne à la feuille A0 des dimensions de 841mm x 1189 mm. Bref, si nos feuilles d'impots nous sont proposées au format f ≈ 1.41, c'est pour qu'une fois pliée en 2, elle ressemble encore à cette même feuille d'impot.
    * Parler de "format" A0 est un abus de langage, puisque des feuilles de dimensions A0, A3 ou A4 ont leur format, au sens mathématique, identique.

  • Le format f = φ, où φ = (1+√5)/2 ≈ 1.62 est le nombre d'or. Ce format repose lui aussi sur une construction géométrique, un peu plus alambiquée que pour le format précédent. L'idée est de chercher s'il existe un rectangle qui conserve son format lorsqu'on lui retire un carré. Théorème : il n'y a qu'un seul format qui vérifie cette propriété.

    On peut une nouvelle fois le mettre en équation. On part une nouvelle fois d'un rectangle de dimension L×l (on supposera L>l), donc de format f = L/l. On retire un carré de côté l. La pièce restante est un rectangle, de longueur L' = l et de largeur l'=L-l ; son format est donc f' = L'/l' = l/(L-l) = 1/(f-1). Le grand et le petit rectangle ont le même format, donc f'=f, soit f = 1/(f-1), et donc f² - f = 1. Cette équation n'a qu'une unique solution positive : f = (1+√5)/2.

    Le format f = φ donnant le rectangle d'or est donc issu d'une construction géométrique, mais ne répond pas à une problématique autre que la satisfaction de faire des maths. On ne retrouve pas dans la vie quotidienne de rectangle ayant ce format à cause de cette considération géométrique. En particulier, c'est un hasard que nos cartes bleueus aient ce format ; si on avait voulu le faire volontairement, cela aurait été bien plus précis.

La grande étude
Il semble pourtant, à en croire les sites internet complotistes ou new age, que le format d'or est partout, parce qu'il correspondrait à un idéal esthétique. Les arguments employés se basent en général sur des appels à la tradition (les grecs utilisaient le nombre d'or, donc c'est vrai) ou d'appel à la nature (on trouve le nombre d'or dans la nature, donc c'est vrai). Quand on recherche la présence de rectangles d'or dans des peintures ou des sculptures que l'on juge esthétiques, on le retrouve, ce qui permettrait de confirmer l'hypothèse "nombre d'or = c'est bô". Le principal problème, c'est que si l'on cherche des rectangles ayant d'autres formats dans ces mêmes peintures et sculptures, on les retrouvera également.

Certes, mais au final, peut-être que les rectangles d'or sont effectivement préférés aux autres rectangles ? Pour en avoir le cœur net, il faut étudier scientifiquement la question, et heureusement, de nombreux psychologues l'ont fait avant moi.

La première étude emblématique de la question est celle du psychologue allemand, Gustav Fechner, en 1874. C'est d'ailleurs sur cette étude que s'appuient les pro rectangle d'or.  Il présente à ses sujets 10 rectangles, allant du format f=1 jusqu'à f=2.5, chacun d'aire égale. Ceux-ci sont blancs, posés sur un tableau noir, et rangés dans l'ordre de leur format. Leur orientation n'est pas connue. Fechner demande au sujet de choisir LE rectangle qu'ils préfèrent, et celui qu'ils aiment le moins. Le rectangle d'or (f = 1.62) est placé en 7e position, entre le format f=1.5 et le format f=16/9. Sur ses 347 réponses, 35% ont préféré le nombre d'or, 20.6% ont préféré le format f=1.5, et 20% pour le format f=16/9. Au contraire, personne n'a choisi le rectangle d'or comme rectangle le moins aimé, et seulement 1.4% ont choisi un des deux rectangles adjacents.

Fechner ne s'est pas arrêté aux rectangles. Il a aussi testé, sous le même protocole, les préférences pour les ellipses. Cette fois-ci, c'est l'ellipse de format f=1.5 qui a eu la préférence (à 42%) des sujets, contre seulement 16.7% pour l'ellipse d'or.
Il a également compilé le format de 20 000 peintures provenant de différents musées et galleries d'art. Le format f=5/4 est privilégié pour les peintures en orientation portrait, et f=4/3 pour celle d'orientation paysage.

Depuis Fechner, de nombreux psychologues ont étudié la question, en variant les protocoles expérimentaux. En 1995, le psychologue canadien Christopher Green a compilé une quarantaine d'études, de 1874 jusqu'à 1992. Les différents résultats sont loins d'être unanimes. Bien qu'ils tournent pour la plupart autour de f=1.6, la préférence n'est jamais très marquée, et jamais précisément sur le rapport d'or.

Du coup, j'ai eu envie de tester moi aussi l'hypothèse, en proposant aux internautes qui me suivent sur Twitter et Facebook de noter des rectangles. Les meilleures notes sont-elles attribuées au rectangle d'or ? Nous allons le voir tout de suite.

J'ai donc proposé aux volontaires de note 20 rectangles de 0 (non harmonique) jusqu'à 5 (très harmonique). Les rectangles sont proposés dans un ordre aléatoire, les volontaires ont été libres de ne pas donner de notes à tous les rectangles. Chaque rectangle (sauf le carré) est présenté en trois exemplaires : en orientation portrait, paysage, et après une rotation de 24°. Tous les rectangles sont de la même couleur, chacun est inscrit dans un cercle de même taille (les aires ne sont cependant pas toutes identiques).

  • Deux carrés (rectangle de format f = 1)
    AA__
  • Trois rectangles de format f = 4/3 ≈ 1.33
  • Trois rectangles de format f = √2 ≈ 1.41


  • Trois rectangles de format f = φ ≈ 1.62


  • Trois rectangles de format f = 16/9 ≈ 1.78
  • Trois rectangles de format f = 2

Je regrette de ne pas avoir glissé de rectangle de format 1.5...

Les résultats
Passons sans plus attendre aux résultats. Merci aux 772 personnes qui ont répondu. Comment avez-vous noté tous ces rectangles ? Voici les résultats bruts. Je vous laisse dans les sources mes données brutes, que vous puissiez vous aussi faire joujou avec.


Distribution des notes proposées

Quand on regarde la proportion de 5/5, le rectangle jugé le plus harmonique semble être le carré, dépassant de peu le rectangle d'or (f=1.62)  orienté paysage, et le rectangle 16/9 (f=1.78) orientation paysage. De manière générale, vous préférez toujours les formats paysages aux autres formats.
Si on s'intéresse aux rectangles jugés à au moins 4/5, le rectangle d'or (paysage) et le rectangle 16/9 (paysage) passent devant.

Au rayon des rectangles les plus rejetés, le prix revient également au carré, quelle que soit sa forme. Le carré est donc à la fois le plus apprécié et le plus déprécié. Le format f=2 à la verticale semble également particulièrement repoussant.


Distribution des meilleures notes données, accompagnée de son intervalle de confiance à 95%.
Une même meilleure note peut être attribuée à plusieurs rectangles différents.

Sur ce critère, les résultats sont similaires. Le rectangle d'or (paysage) arrive en tête (37% des votes), suivi du carré (31.3%), puis du rectangle 16/9 (29.5% des votes). De tous les formats portraits (hors carré), le format √2 est le premier.


Note moyenne et écart-type attribués à chaque rectangle

Lorsque les rectangles sont présentés en orientation paysage, le rectangle d'or et le rectangle 16/9 arrivent pour ce critère une nouvelle fois en première position. En orientation portrait, ce sont cependant les formats √2 et 4/3 qui ont vos préférences.

Finalement, l'expérience semble dire que de tous les rectangles qui vous ont été proposés, ce sont le rectangle d'or en format paysage et le carré posé que vous avez plébiscité. Ça pourrait être un résultat intéressant, mais il y a quand même plusieurs soucis. Déjà, les préférences pour un format donné sous l'orientation paysage ne se retrouvent pas dès que celle-ci est changée ; le rectangle d'or est apprécié en paysage mais boudé en portrait. De plus, mon questionnaire s'est limité à un échantillon de seulement 6 rectangles différents, ce que l'on pourrait sans doute affiner davantage. Un questionnaire avec des rectangles générés automatiquement serait parfait. Enfin, il y a un certain biais dans la population testée, certains ayant avoué avoir voté pour le rectangle d'or parce que c'est le rectangle d'or.

Bref, je ne sais pas si j'ai fait avancer la science, mais on a au moins une réponse. Une réponse floue, mais c'est quand même une réponse.

 


Sources :
All that glitters : a review of psychological research on the aesthetics of the golden section, Christopher D. Green
Faites vos propres stats : les données brutes

Posté par El Jj à 10:00 - Commentaires [16] - Permalien [#]
Tags : , ,
27 juin 2017

Problèmes de voisinages sur l'ile de Wada

Sur l’ile de Wada, perdue au milieu de l'Atlantique, trois royaumes indépendants se partagent les terres. Le Royaume du Naah’Oj, peuplé de guerrières et de guerriers forts et courageaux, mais bizarement pacifiques ; le Royaume de l’Ayhliuj, une nation de sages adeptes de la philosophie et des mathématiques, et le Royaume n°3, dont la principale caractéristique est de n'avoir aucune particularité. La paix y règne depuis des siècles.

L'ile est connexe par arcs, et chacun de ces royaumes est connexe par arcs (ie, on peut toujours aller à cheval d’un point A à un point B du royaume donné sans avoir à traverser la moindre frontière). De plus, chaque parcelle de terre de l’ile est occupée par l’un des 3 royaumes (sauf les points frontières, qui n'appartiennt à aucun royaume, mais leur taille est de mesure nulle).
Sur cette ile, combien existe-t-il au maximum de points triples, c’est à dire de points où trois royaumes se rejoignent ?

Avec deux trois coups de crayons, on peut facilement fabriquer un exemple où il n'y en a qu'un seul..

Ile Wada 1
L'ile de Wada : trois royaumes, un seul point triple

Avec quelques coups de crayons supplémentaires, on peut se convaincre qu’il peut y en avoir deux, si l’un des royaumes est enclavé au milieu des autres.

Ile Wada 2
L'ile de Wada II : trois royaumes, deux points triples.
Peut-on faire mieux ?


Mais est-ce possible d’en avoir au moins 3 ? Ou davantage ?

Eh bien, oui, il est même possible qu’il y ait une infinité. Pire, il est possible que chacun des points de la frontière soient des points triples ! Une telle carte a été imaginée en 1917 par le mathématicien japonais Kunizo Yoneyama, reprenant selon lui l’idée de Takeo Wada, lui aussi japonais et mathématicien.
À vrai dire, je voulais parler de ce problème dans mon article/vidéo sur le théorème de Jordan, parmi les nombreux objets étranges liés à la démonstration du théorème. Je n’ai pas retenu l’idée, pour éviter le hors-sujet, mais il me semble important de tout de même en parler. Les courbes continues partout et dérivables nulle part et les courbes remplissantes permettent de saisir la complexité de la notion de courbe ; la sphère cornue d’Alexander permet de comprendre que la notion d’extérieur ou d’intérieur n’est pas complètement triviale. Les royaumes de Wada, quant à eux, obligent à regarder de plus près la notion de frontière.

Lac de Wada
Le lac de Wada tel qu'il apparait pour la première fois en 1917 dans l'article de Yoneyama


En fait, c’est quoi une frontière entre deux domaines ? Sans rentrer dans les détails techniques, on dit qu’un point est à la frontière de deux ensembles distincts A et B si, quand on trace un disque (arbitrairement petit) autour de ce point, il y aura toujours au moins un point du disque qui appartient à A, et un autre qui appartient à B. Une frontière se doit donc d’être d’épaisseur nulle, sans quoi on pourrait y glisser un tout petit disque.
De même, on peut définir un point triple entre trois ensembles distincts A, B et C comme étant un point tel que tout disque (arbitrairement petit) autour de ce point contiendra au moins un point de A, de B et de C.

Points frontières
Le point A n'est pas un point frontière : on peut trouver un disque autour de A inclut dans un seul domaine
Le point B est un point frontière : tout disque, même tout petit, autour de B chevauche au moins deux domaines
Le point C est un point triple : tout disque, même tout petit, autour de C chevauche trois domaines

Welcome to Wada Island
Revenons sur notre ile, et regardons jours après jours comment celle-ci a été colonisée. Il se trouve que cette ile est un carré de 270km de côtés, cela va nous arranger pour les calculs.


Année 0. L'ile est sauvage.
Chaque carreau a pour côté 10km.

Année 1 : Les colons de Naah’Oj arrivent par le milieu de la côte ouest, et colonisent l’ile au maximum de façon à laisser 90 km de zones libres entre le royaume et les côtes Nord, Est et Sud (une tradition de ce peuple est de toujours laisser des zones libres pour que d'autres peuples puisse également s'y installer). Ils occupent donc 2/9 des terres disponibles.


Année 1 : tout point de la bande blanche est à moins de 90km du royaume.


Année 1 + ½ : Les colons de l’Ayhliuj débarquent en zone libre, au milieu de la partie nord de la côte ouest. Ils ne sont pas venus en guerre, ils décident donc de s’étendre sur la zone vierge, en faisant en sorte de toujours laisser 30 km de no man’s land entre le royaume et le reste du monde (mer ou royaume de Naah’Oj).


Année 1.5 : tout point de la bande blanche est à moins de 30km d'un royaume.

Année 1 + ½ + ¼  : les colons du Royaume n°3 débarquent à présent, dans la partie libre la plus au nord de la côte ouest. Le royaume va lui aussi s’étendre, en restant dans la bande de 30km laissée par le royaume de l’Ayhliuj. Pour ne pas s’attirer de problèmes, ils gardent dans leur conquête une marge de 10 km entre eux et les autres royaumes ou côtes
À ce stade des camganes de colonisation, il n’existe pour l’instant aucune frontière entre ces trois régions, seulement une bande large de 10 km.


Année 1.75 : tout point de la bande blanche est à moins de 10km d'un royaume.

Année 1 + ½ + ¼ + ⅛ : Voyant les autres royaumes s’installer, Naah’Oj entreprend une nouvelle campagne d’extention. Dans la bande 10 km encore vide, ils s’étendent de façon à laisser une bande large de 3.333...km entre toutes les autres frontières


Année 1.875 : tout point de la bande blanche est à moins de 3.33km d'un royaume.


Jours suivants : Les uns après les autres, les différents royaumes vont s’étendre chacun leur tout dans les bandes laissées libres à l’étape précédente, de façon à ce que ces bandes soient à chaque étape d’une largeur trois fois plus petites.


Année 2 : tout point de la bande blanche est à moins de 0km d'un royaume.

À la fin de la deuxième année, chaque royaume aura réalisé une infinité de campagnes d’extension. La bande séparant les différents royaumes ne peut plus être qualifiée comme telle ; bien qu’elle existe encore, sa largeur est d’épaisseur nulle, cette bande est donc la frontière entre les trois royaumes. Mais surtout, la construction que l’on vient de faire permet d’affirmer que chacun des points est un point triple.


Pour voir cela, prenons un point quelconque de cette frontière, et traçons autour un petit disque. Étant donné qu’à chaque étape de la construction, la bande a été divisée par trois, il y a forcément une étape de la construction durant laquelle la bande passait au travers de ce disque. Durant les trois étapes suivantes, de parties de la bande se sont faite annexer par chacun des trois royaumes : il y a bien un point de chaque ensemble dans ce petit disque, c’est un point triple ! C’est donc l’ensemble des points de la frontière qui sont des points triples !


Détail d'un point autour d'une bande rouge.
N'importe quel disque tracé autour d'un point de la frontière chevauchera chacun des trois ensembles.


En fait, ce qui défie l’intuition dans cette construction, c’est que les points triples en questions sont bien des points triples au vu de la définition que l’on a donné plus haut, mais ce ne sont pas des points triples en forme de Y auquel on pouvait s’attendre.


Les fractales de Newton
On retrouve le principe des royaumes de Wada dans beaucoup de fractales. Un exemple pas trop compliqué est celui des fractales de Newton. Le principe est le suivant : on choisit un nombre complexe z0 ∈ ℂ, et on calcule la suite définie par zn+1zn - p(zn)/p’(zn), avec p une fonction polynomiale. En général, cette suite convergera vers l’une des racines de ce polynôme, c’est le principe de la méthode de Newton pour calculer numériquement les racines d’un polynôme.
Prenons par exemple la fonction p(z) = z3–1, qui possède trois racines : 1, – 0.5 + √3/2 i et – 0.5 – √3/2 i. En choisissant le nombre z0 = 10, la suite zn+1 = zn - (zn3–1)/(3 zn²) donnera z1 = 6.67, z2 = 4.54, z3 = 2.98, etc. Cette suite converge vers 1, qui est bien une racine du polynôme.
En partant de z0 = i, la suite convergera vers -0.5 + √3/2 i.
On peut alors s’amuser à colorier les points z0 en fonction de point vers laquelle la suite converge, ce qui donne ce que l’on appelle les fractales de Newton.

Newton 3
Fractale de Newton associée au polynôme p(z) = z3–1.
Les différentes couleurs correspondent aux trois bassins d'attraction des racines de p.


Non seulement, ces fractales sont très jolies, mais on y retrouve la propriété des royaumes de Wada : on a construit trois ensembles, et tout point de la frontière est un point triple.

On peut bien sûr étendre le concept, et fabriquer des ensembles où tous les points de la frontière sont des points quadruples, comme cette fractale obtenue par la méthode de newton sur le polynôme p(z) = z4-1.

Newton 4
Fractale de Newton associée au polynôme p(z) = z4 – 1.

Je vous laisse imaginer comment obtenir une fractale de Newton où tous les points frontières sont duoquadruple...


 

Sources :
Lakes of Wada - Wikipedia
Theory of continuous Set of Points, Kunizô Yoneyama

Posté par El Jj à 23:27 - Commentaires [1] - Permalien [#]
Tags : , , ,
24 juin 2017

Deux (deux ?) minutes pour... le théorème de Jordan

Un théorème complètement évident qui n'est pas si évident que ça quand on creuse un peu ? C'est le théorème de Jordan !

Vignette

Deux (deux?) minutes pour... le théorème de Jordan

Script + commentaires :

En 1887, le mathématicien français Camille Jordan démontre l’un des théorèmes fondamentaux de la topologie, le théorème de Jordan. Celui-ci énonce que si l’on dessine sans lever le crayon une courbe qui commence et termine en un même point et qui ne s’auto-coupe pas, alors cette courbe partagera toujours le plan en deux morceaux : l’intérieur et l’extérieur. Ce théorème peut vous sembler complètement évident, mais c’est loin d’être l’avis des mathématiciens. Ça tombe bien, j’ai 2 minutes pour en parler.
 
Pour énoncer le théorème de Jordan, nous avons besoin d’un certain type de courbes du plan que l’on appelle les courbe fermées simples, ou parfois les courbes de Jordan ; il s’agit d’une courbe qui est un lacet, c’est à dire qu’elle est continue, on peut théoriquement la tracer sans lever le crayon, en que de plus, son point de départ est le même que son point d’arrivée. On demande en plus que ce lacet soit simple, c’est à dire qu’il ne passe pas deux fois par le même point, qu’il ne s’autocroise pas en fait. Une façon équivalente et un peu plus topologique de voir un lacet simple, c’est de dire qu’il s’agit d’un cercle déformé.
Si on veut être précis, un lacet simple telle qu'on l'entendra ici est une fonction continue f : [a;b] → ℝ² avec a < b, et f(a)=f(b) et injective sur [a;b[. En particularité, la courbe ne peut donc pas se réduire en un unique point. De manière équivalente, on peut dire qu'il s'agit d'une fonction continue injective f : S1 → ℝ² . On se permet d'identifier la fonction à son graphe, pour pouvoir un minimum se représenter le concept.


Le théorème de Jordan, donc, affirme que dans le plan, un lacet simple délimite toujours exactement deux régions différentes, ni plus, ni moins. Il va même plus loin, et précise que les deux régions en question sont connexes, c’est à dire qu’elles sont chacune d’un seul tenant, et qu’en plus l’une est bornée alors que l’autre non. On appellera le premier “l’intérieur” et le second “l’extérieur”. On peut même aller encore plus loin, et dire que la frontière entre ces deux régions n’est autre que le lacet initial. Et c’est à peu près tout, voilà ce qu’énonce ce grand théorème.
 
Ceci vous sera sans aucun doute complètement intuitif. Mais pour un mathématicien, ce n’est pas parce que c’est intuitif que c’est complètement évident. Pour avancer, il est nécéssaire de le prouver. Et c’est sur ce point que le théorème devient intéressant, puisque cette évidence est particulièrement difficile à démontrer rigoureusement. Avant que Jordan ne le démontre à la fin du XIXe siècle et lui donne le statut de théorème, de nombreux mathématiciens s’y s’ont cassé les dents.
Le premier à avoir débroussaillé ce sujet est Bernhard Bolzano, l’un des fondateurs de la topologie telle qu’on la connait aujourd’hui. On lui doit notamment le théorème de Bolzano, plus connu des lycéens sous le nom de théorème des valeurs intermédiaires, celui qui permet d’affirmer des choses comme “si je monte un escalier pendant que tu le descends, il y aura un moment où nous nous croiserons”. Ça aussi, ce n’est pas complètement évident, mais c’est un autre sujet. On le connait aussi pour le théorème de Bolzano-Weiestrass, autre théorème incontournable en topologie.
Bolzano, donc, peut être considéré comme celui qui a posé les première pierres du théorème de Jordan. La première pierre indispensable dans la construction d’un théorème, c’est de voir qu’il y a quelque chose à démontrer. Des générations de mathématiciens sont passé à côté de la propriété en la supposant à tort comme étant triviale, évidente. Il faut ensuite donner les bonnes définitions des concepts qui sont en jeu, de façon à poser une conjecture claire : c’est quoi une courbe, c’est quoi une frontière, comment on sait qu’un point est à l’intérieur, etc.. La troisième et dernière étape, sur laquelle Bolzano a consacré beaucoup de temps et d’énergie est celui de la démonstration à proprement parler. Sans succès.
 
Mais pourquoi ce théorème est-il si difficile à prouver? Le principal problème, c’est que ce théorème est global, et non simplement local. Pour savoir si un point est à l’intérieur ou à l’extérieur d’un lacet simple, il faut être capable de prendre en compte la totalité de la courbe, et non pas seulement une partie. C’est pour cette raison que le théorème devient faux si on se place ailleurs que sur plan. Par exemple, si la courbe de Jordan est tracée sur la surface d’un tore ou d’un ruban de Moebius, il peut arriver qu’elle ne délimite ni intérieur, ni extérieur. De même, si la courbe est un élastique d’un espace à 3 dimension, il est clair que l’on ne peut pas parler d’intérieur ou d’extérieur.
 
L’autre problème, particulièrement gênant, c’est que les exemples planaires auquel on pense face à l’énoncé du théorème de Jordan ne rendent pas comptent de la complexité potentielle de ce que peut être une courbe. Et ce sont ces complexités qui n’auraient peut-être pas été découvertes si l’on s’était contenté de dire que la conjecture de Bolzano était évidente.
Si on parle de lacet simple, on pense généralement à des cercles gentiments déformés. Malheureusement, un lacet simple, ça peut ressembler à ça, à ça ou à ça. Dans de tels cas, l’intérieur, l’extérieur et la frontière sont parfaitement définis, mais sont difficiles à appréhender simplement.
 
Un exemple relativement simple de courbe qui peut poser problème est la courbe de Von Koch, une courbe fractale dont la longueur a pour particularité d’être infinie. Pour construire cette courbe, on va y aller étape par étape. On part d’un triangle équilatéral puis, à chaque étape, on construit un nouveau triangle équilatéral sur le deuxième tiers de chacun des côtés de la figure de l’étape précédente. Ainsi, on a 4 triangles à la deuxième étape, 16 à l’étape suivante, et ainsi de suite. La courbe de Koch est le périmètre de ce flocon après une infinité d’étapes. On peut remarquer que, à chaque étape, chaque segment de la frontière est divisé en 3 et multiplié par 4, autrement dit, la longueur de la frontière est à chaque étape multiplié par 4/3, ce qui implique après une infinité d’étapes une longueur infinie pour la courbe de Koch. Cette courbe est fractale, si bien qu’il est parfois difficile de savoir si un point proche de la frontière est à l’intérieur ou à l’extérieur.
Ce qu’il y a de pire avec les courbes fractales comme celle de Koch, c’est qu’en chacun de leur point, elles ont l’allure de zig-zag, et ça quel que soit le niveau de zoom. Il est donc impossible de leur trouver des droites tangentes. On dit que la courbe n’est pas différentiable, ce qui est un réel problème vu qu’une bonne part de la boite à outil des mathématiciens repose sur l’étude de cette différentiabilité.
 
Des courbes non différentiable, c’est à dire sans tangentes, les mathématiciens en ont fabriqué tout un bestiaire, et ce n’est pas un hasard si la première de l’histoire a été fabriqué par Bernhard Bolzano. Pour la construire, on procède à nouveau par étapes. On commence pour cela par se choisir une courbe en zig-zag. Celle-ci, composée de 4 segments, fera l’affaire. Ensuite, on transforme chaque segment composant ce zig-zag par des versions contractées du zig-zag initial. Après avoir répété cette opération une bonne infinité de fois, on obtient la courbe de Bolzano, une courbe continue partout mais sans la moindre tangente. Bref, une courbe, ça peut paraitre simple intuitivement, mais rien ne reste simple très longtemps chez les mathématicien.
 
Puisque j’en suis à parler de courbe bizarres, la palme revient aux courbes remplissantes : une courbe continue qui a la particularité de passer par rigoureusement tous les points à l’intérieur d’un carré. La courbe de Moore en est un bon exemple, et sa construction se réalise à nouveau par étape.
Partons donc de ce grand carré, que l’on découpe en quatre carrés plus petits. On numérote ces carrés de A à D, de sorte que si les numéros se suivent, les carrés se touchent. En reliant leur centre, on obtient une première courbe, pas forcément très intéressante.
À présent, découpons chacun de ces carrés en petits carrés. On va numéroter ces petits carrés de AA jusqu’à DD, de sorte que la première lettre soit celle du précédent découpage, et que si les numéros se suivent, les carrés se touchent. En reliant dans l’ordre les centres, on obtient une nouvelle courbe, un peu plus intéressante que la précédente.
On poursuit alors le processus de découpage et de numérotation, ce qui donnera des courbes de plus en plus complexes.
Après quelques étapes de ce processus, on obtient une courbe de Jordan où il devient assez difficile de distinguer du premier coup d’oeil où se trouve son intérieur et où se trouve son extérieur. Mais après une infinité d’étapes, il n’y a même plus besoin de se poser la question. La courbe que l’on obtient est la courbe de Moore, qui ne possède même plus d’intérieur. Tous les points du grand carré initial appartiennent en fait à la courbe. Ça devrait être un contre-exemple du théorème de Jordan, mais ce n’est en fait pas le cas, puisque la courbe de Moore n’est pas un lacet simple. C’est bien un lacet, car la courbe est refermée sur elle-même, mais il n’est pas simple, puisque presque partout, la courbe se chevauche. Pourquoi ? Prenons par exemple le point central du carré. D'étapes en étapes, la courbe de Moore va se rapprocher de ce point, et ça depuis les 4 directions à la fois. Après une infinité d'étapes, ces 4 directions atteindront le point central "en même temps", ce sont donc 4 portions de la courbe qui s'y croiseront. Il se passe en fait la même chose partout dans le carré lors du passage à l'infini.
J'ai choisi de parler de la courbe de Moore et non de celle de Peano, de Hilbert ou de Lebesgue, d'autres courbes remplissantes, pour donner un exemple de courbe remplissante qui soit également un lacet. Petit point supplémentaire, je n'ai traité que d'un seul aspect des courbes remplissantes, le fait qu'elles sont... "remplissante". Il y a des tas de choses intéressantes à raconter à leur sujet que j'ai à peine évoqué (en particulier, ces fonctions, malgré leur aspect "bricolé" avec l'infini, sont des objets qui se définissent sans ambigüité et sur lesquelles ont peut prouver des choses, notemment qu'elles sont bien continues et non différentiable)
 
C’est donc l’existence de ces courbes monstres, sans tangentes, qui rendent si difficile la preuve du théorème de Jordan. Contrairement à ce que leur nom laisse entendre, les lacets simples sont loins d’être simple. Et encore, je ne vous ai pas parlé des courbes non rectifiables. Bref, Bolzano passera une partie de sa vie à essayer de démontrer le théorème, mais ce n’est qu’en 1893 qu’une réelle preuve pointera son nez. Dans son cours d’analyse de l’école polytechnique, Camille Jordan donne une démonstration courte, simple et rigoureuse de ce que l’on appellera à partir de là le théorème de Jordan.


La démonstration procède en deux temps. On commence par prouver que si la courbe est un polygone, alors le théorème est vrai. Pour comprendre comment cela fonctionne, prenons un courbe de Jordan polygonale, n’importe laquelle, et choisissons arbitrairement une direction du plan. Disons par exemple, vers le nord est. On choisit alors un point, n’importe lequel, qui n’appartient pas à la courbe, et on trace la demi-droite partant de ce point vers la direction préalablement choisie. Si cette demi-droite passe par un sommet du polygone, on passe notre tour, sinon on compte le nombre de points d’intersection. Si celui-ci est pair, on colorie le point en rouge, sinon, on le colorie en bleu. Miracle, tous les points à l'extérieur de la courbe sont rouges, et tous ceux qui sont à l’intérieur sont bleus. Ce coloriage ne dépend en fait pas de la direction initialement choisie. Si, par exemple, un point a été colorié en rouge, c’est qu’un nombre pair de points sont à l’intersection de la demi-droite et du polygone. En tournant cette demi-droite, le nombre de points d’intersection ne peut que augmenter de 2 ou diminuer de 2, la parité ne dépend en fait pas de la direction choisie.  Pour les points pour lequel on a passé notre tour, il suffit de choisir autre direction, il y en aura forcément une qui ne passera par aucun sommet. Avec le même argument, on peut voir que si un segment ne coupe pas la courbe polygonale, alors tous ses points seront de la même couleur. Tous les points extérieurs à la courbe sont donc à présent coloriés, il y a d’un côté les rouges, et l’autre les bleus. Il reste donc à montrer que tous ces points rouges ne forment qu’un seul bloc, l’extérieur, et que les points bleus forment un autre bloc, l’intérieur. Pour ça, il faut montrer que deux points bleus peuvent toujours être reliés par un chemin qui reste en zone bleue, et de même du côté rouge. Prenons deux points au hasard de l’ensemble bleu, et relions les par un segment. Si ce segment est inclus dans l’ensemble bleu, il n’y a rien à faire. Si ce segment passe par un sommet du polygone, on pourra toujours construire un petit détour qui reste en zone bleu. Si enfin le segment ne touche aucun sommet, alors il coupera le polygone un nombre pair de fois. On peut alors, en suivant la courbe polygonale, fabriquer des chemins bleus reliant deux à deux les points d’intersection. Bref, si la courbe est polygonale, il y a bien une seule zone intérieure, formée par les points bleus, et une seule zone extérieure, formée par les points rouges, CQFD.
 
Ce qu’il reste à faire, c’est montrer que n’importe quelle courbe peut être approchée  suffisamment près et de la bonne manière par un polygone, ce qui permettra de conclure que n’importe quel lacet simple possède bien un intérieur et un extérieur. Cette partie est assez technique, donc je vais passer mon tour ici.
 
Bref, avec ces deux arguments simples, Jordan a démontré ce qu’il fallait démontrer. Tout pourrait être parfait si il n’avait pas cette sale habitude que peuvent avoir certain profs : considérer que des parties de la démonstration sont tellement simples que l’on peut se permettre de les laisser en exercice à ses étudiants. Il ne s’est en effet pas embêté à en rédiger la première partie. La réponse des mathématiciens contemporains ne se fera pas attendre : la démonstration de Jordan semble tout à fait correcte, mais est trop lacunaire pour pouvoir être réellement acceptable. Un peu comme quand votre prof de maths écrit en rouge “Justifiez” dans la marge de votre copie. De fait, la première démonstration rigoureuse du théorème de Jordan date de 1905, 12 ans plus tard, et est signée du mathématicien américain Oswald Veblen. Avec le temps, le nom de Veblen sera effacé, et le théorème conservera celui de Jordan. Ce théorème, littéralement incontournable en topologie, a vu depuis bien d’autres démonstrations, sa validité est aujourd’hui incontestable.
 
On peut être tenté de généraliser le propos : si une courbe de Jordan, c’est à dire un cercle déformé dans le plan délimite toujours deux espace connexes distincts, est-ce le cas pour une sphère déformée dans l’espace à 3 dimensions, ou pour une hypersphère déformée dans un espace de dimension 42 ? Pour la dimension 3, cela semble intuitivement vrai, et pour la dimension 42, cela semble intuitivement rien du tout, puisque rien n’est intuitif en dimension 42. La réponse ne se fera pas attendre très longtemps, puisqu’en 1912, Brouwer démontre que oui. Le théorème de Jordan-Brouwer énonce donc qu’une sphère déformée délimite deux espace distincts connexes de l’espace tridimentionnel, et cela se généralise à n’importe quelle dimension finie, sans ajouter la moindre hypothèse.
    Mais il y a forcément un truc qui cloche. Même si le théorème de Jordan-Brouwer est parfaitement correct, une généralisation aussi simple, ça doit cacher quelque chose de pas très clair.
C’est en 1924 que l’on découvrira un objet qui met un petit peu à mal cette jolie généralisation. Étant donné qu’une courbe de Jordan délimite toujours le plan en deux régions, l’extérieur, et l’intérieur, on peut se demander quelle est la forme globale de ces régions en question. On peut alors prouver, et c’est le théorème de Schoenflies [Chenfliss]  qui le dit, que l’intérieur est toujours un disque déformé, et que l’extérieur est toujours un plan privé d’un disque déformé. Bref, quand on déforme un cercle, on déforme en même temps son intérieur et son extérieur. À partir de la dimension 3, ceci n’est plus vrai. Quand une sphère est déformée, eh bien la forme de l’extérieur ne sera pas toujours équivalente à celle d’un extérieur de boule déformé. C’est donc là que les choses deviennent contre-intuitives.

    L’objet mathématique qui le prouve, c’est celui-ci, la sphère cornue d’Alexander. Pour le construire, on part d’une sphère, sur laquelle on rajoute des cornes. Au bout de chaque corne, on rajoute une paire de cornes, au bout desquelles on rajoute des paires de cornes, et ainsi de suite, de façon à les entrelacer. Après une infinité d’étapes, on a une infinité de cornes toutes plus enchevêtrées les unes dans les autres. Les plans de la sphère d'Alexander sont disponibles ici pour ceux qui ont une imprimante 3D.

Ajouter des cornes, cela peut être fait par déformation. La sphère d’Alexandre est donc, à déformation près, similaire à la sphère initiale. Cependant, la sphère a été déformée de manière si particulière que son extérieur n’est plus simplement connexe. Je m’explique. On dit qu’un espace est simplement connexe si un élastique peut s’y déplacer où il veut sans la moindre entrave. L’extérieur d’une sphère est simplement connexe, et c’est une propriété qui est toujours conservée après déformation. Si un élastique est coincé dans les cornes de la sphère d’Alexander, il ne pourra pas s’y échapper. L'extérieur de cette sphère cornue ne peut pas être obtenu par déformation d’un extérieur de sphère, puisque ce n’est pas aussi simplement connexe que prévu. La généralisation à la 3e dimension du théorème de Jordan n’est donc pas aussi évident que l’on aurait pu croire.
Bref, tout n’est pas si évident que ça dans le théorème de Jordan. Le contre-exemple un peu exotique qu’est cette sphère d’Alexander n’aurait jamais été découvert si l’on s’était contenté de considérer évident ce qui ne l’était pas vraiment. C’est donc aussi pour cela que des mathématiciens passent leur temps à chercher à démontrer rigoureusement tout ce qui leur passe sous le nez, pendant que les autres pointent les erreurs de rigueur des premiers. Démontrer un théorème, c’est donc non seulement s’assurer qu’un énoncé mathématique est vrai, mais c’est surtout chercher à comprendre pourquoi il est vrai, et ainsi mieux comprendre les objets mathématiques que l’on étudie. La géométrie hyperbolique, par exemple, n’aurait jamais été découverte si des générations de mathématiciens ne s’étaient pas écharpé à vouloir prouver le 5eme postulat d’Euclide. De même, la notion incontournable de groupes en algèbre est le fruit du travail de mathématiciens qui ne voulaient pas se contenter de résoudre des équations de manière approchée. En mathématiques, les démonstrations sont aussi importantes que les résultats, voilà pourquoi les mathématiciens sont si tatillons. C’est ça, la morale de l’histoire.

FAQ
- En en dimension infinie ?
A priori, non. En fait, la topologie en dimension infinie est particulièrement contre-intuitive. En particulier, les "sphère" de dimension infinie ne sont pas toujours réellement "creuse" (plus précisément, elles peuvent être contractile). cf ce lien.


Sources :
Jordan curve theorem, Wikipedia
Cours d'analyse de l'École polytechnique, Camille Jordan - la démo originale de Jordan
Jordan’s Proof of the Jordan Curve Theorem, Thoams C. Hales - Historique des preuves et des critiques de la démo du théorème
La courbe de Koch, Mathcurve
Le théorème de Jordan topologiquement, Hugues Lerebours Pigeonnière - Démonstration moderne du théorème de Jordan
Demonstrating that rigour is important, mathoverflow - Catalogue d'exemples expliquant pourquoi la rigueur est importante en maths
Jordan Curve Theorem, Proof, Cut the knot - Démonstration complète et vulgarisée
Continuous Nowhere Differentiable Functions, Johan Thim - Catalogue de courbes continues et non différentiable

Posté par El Jj à 17:07 - Commentaires [4] - Permalien [#]
Tags : , , , ,
01 avril 2017

500 € TICKETS A GRATTER CHALLENGE EN COUPLE !!!!

Hey ! Salut à tous les amis, on se retrouve pour une vidéo un peu spéciale !


Sources :
Règlement du millionnaire

Posté par El Jj à 20:36 - Commentaires [2] - Permalien [#]
Tags : , ,