Rappelez-vous, c'était il y a une semaine...
Vous appreniez (sans doute avec effroi) que l'on pouvait concevoir que par un point extérieur à une droite ne passe aucune droite parallèle (géométrie elliptique) ou alors, une infinité (géométrie hyperbolique).
A propos de la géométrie hyperbolique, j'en était resté à un simple "Il y en a tout un tas, et n'en comprenant aucune d'entre elle, je ne peux pas en dire tellement plus".

Et bien, votre humble serviteur s'est renseigné sur le sujet (en fait, il est tombé sur l'article par hasard), et finalement, un monde dans lequel les carrés n'ont pas d'angles droits mérite pleinement sa place dans ce blog... Petite visite guidée au pays de la géométrie hyperbolique selon Poincaré.

Imaginons un disque. Un simple disque. Pour compliquer, appelons le "plan hyperbolique de Poincaré".
Pour avoir une bonne géométrie, il faut des droites et des points. Un "point" sera simplement un point appartenant au plan de Poincaré. Pour la notion de "droite", on prendra les diamètres du cercle et les arcs de cercle orthogonaux au pourtour du disque.
Les choses ressembleront alors à quelque chose comme ça :
poincare

H est le plan hyperbolique de Poincaré

Plusieurs droites y sont représentées. On peut voir que les 4 premiers axiomes d'Euclide sont bien conservés, notamment celui selon lequel il n'existe qu'une unique droite passant par deux points distincts.

Et l'axiome des parallèles ? On voit qu'il n'est pas respecté : il existe plusieurs droites passant par le point M qui ne coupent pas la droite D (T1, T2).






Maintenant, faisons attention à ne pas tout mélanger, surtout en matière de mesure des longueurs ! Le schéma ci-dessus n'est qu'une représentation. Plus on s'approche du bord du cercle, plus deux points proches en apparence seront éloignés. Un être vivant qui se déplacerait sur le plan de Poincaré ne pourrait jamais en atteindre les bords. Et nous, simple observateurs de cet être, le verrions rapetisser au fur et à mesure qu'il avance. Les angles, cependant, restent identiques pour tout le monde.


carrehyp
Ceci est un carré... Si si ! Les quatre angles sont égaux, les quatre côtés aussi

Dans le monde hyperbolique de Poincaré, la somme des angles d'un triangle est toujours inférieure à 180° (pi radians). Et ce qui est épatant la dedans, c'est que la différence avec pi donne la mesure de l'aire de ce triangle ! C'est peut-être un détail pour vous, mais quand même, c'est fou !
Et en conséquence, il n'existe pas de carrés à proprement parler, la somme des angles d'un quadrilatère étant toujours inférieure 360° (2pi radians). Il existe bien des "carrés", mais ils ne possèdent pas d'angles droits.

Autant il n'y a pas de quadrilatère avec quatre angles droits, autant il existe des pentagones droits avec 5 angles droits, des hexagones droits, et ainsi de suite... (heptagone, octogone, nonagone, triacontakaiheptagone...)

pentag
Un magnifique pavage du pan hyperbolique par des pentagones réguliers droits (en blanc)


Et encore plus fort : il existe un infinigone régulier ! C'est un polygone régulier, avec tous ses côtés égaux et tous ses angles égaux (à 120°). Et le plus fort, c'est que l'on peut paver le plan avec !

infinigone
(Plan pavé d'infinigones réguliers)

Mais tout n'est pas si compliqué dans cette vision de la géométrie, puisqu'on peut y faire beaucoup de choses impossibles à faire dans le plan euclidien. On peut, par exemple, y réaliser la quadrature du cercle. Et, encore plus fort, la conjecture P=NP est vérifiée ! (Mais pour le millions de dollars, c'est dans le plan euclidien qu'il faut le démontrer).
Bon, les choses deviennent plus difficiles quand on commence à s'intéresser à un espace hyperbolique de dimension 5 ou supérieures, mais je crois que dans l'état actuel du blog, ce n'est pas très intéressant...

Escher1
Limite Circulaire I
(M.C. Escher)



Sources :

Pour la science, n°316 février 2004 (que l'on peut lire ici)
De jolies illustrations provenant de ici
Ici, un applet java sympathique